1	$(y-4)^2 - (y-4) + y^2 = 10$ or $x^2 - x + (x+4)^2 = 10$		6	M1	for substituting linear equation into the quadratic equation
	$2y^2 - 9y + 10 = 0$ or $2x^2 + 7x + 6 = 0$			Al	for a correct equation in the form $ax^2 + bx + c = 0$ or $ax^2 + bx = -c$ or equations of the same form but in y
	$\frac{(2y-5)(y-2) = 0 \text{ or}}{\frac{9 \pm \sqrt{(-9)^2 - (4 \times 2 \times 10)}}{2 \times 2}} \text{ or}$ $\frac{(2x+3)(x+2) = 0 \text{ or}}{\frac{-7 \pm \sqrt{7^2 - (4 \times 2 \times 6)}}{2 \times 2}}$			M1ft	For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{-7 \pm \sqrt{49-48}}{4} \text{ or eg} \left(x + \frac{7}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$ $\frac{9 \pm \sqrt{81-80}}{4} \text{ or eg} \left(y - \frac{9}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$
	(- 1.5, 2.5) and (- 2, 2) $\sqrt{('-1.5'-'-2')^2 + ('2.5'-'2')^2}$			A1 M1	for both pairs of coordinates oe eg $\left(\frac{-3}{2}, \frac{5}{2}\right)$ accept coordinates listed as pairs, ie x_1, y_1, x_2, y_2 dep on M1 for finding length of <i>AB</i>
		$\frac{\sqrt{2}}{2}$		A1	dep M3
					Total 6 marks

2	$3y^2 + 7y + 16 = (2y - 1)^2 - (2y - 1)$	$3\left(\frac{x+1}{2}\right)^2 + 7\left(\frac{x+1}{2}\right) + 16 = x^2 - x$		5	M1 substitution of linear equation into quadratic.
	E.g. $y^2 - 13y - 14 (= 0)$ oe	E.g. $x^2 - 24x - 81 (= 0)$ oe			A1 (dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c (= 0)$
	$y^2 - 13y = 14$	$x^2 - 24x = 81$			allow $ax^2 + bx = c$
	E.g. (y - 14)(y + 1) (= 0) or $(y =) \frac{-(-13) \pm \sqrt{(-13)^2 - 4 \times 1 \times -14}}{2}$ or $\left(y - \frac{13}{2}\right)^2 - \left(\frac{13}{2}\right)^2 = 14$ oe	E.g. (x + 3)(x - 27) (= 0) or (x =) $\frac{-(-24) \pm \sqrt{(-24)^2 - 4 \times 1 \times -81}}{2}$ or $\left(x - \frac{24}{2}\right)^2 - \left(\frac{24}{2}\right)^2 = 810e$			M1 (dep on M1) for the first stage to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $\frac{13\pm\sqrt{69+56}}{2} \text{ or } \frac{24\pm\sqrt{576+324}}{2}$ or eg $\left(x-\frac{24}{2}\right)^2$ – 225 oe
	$(x =) 2 \times 14' - 1 \text{ and } 2 \times -1' - 1$	$(y =) \frac{27'+1}{2}$ and $\frac{-3'+1}{2}$ oe			M1 (dep on previous M1) may be implied by values of y or x that are consistent with a correct substitution.
			(27, 14) and (-3, -1)		A1 for both solutions dep on M2 Must be paired correctly. accept $x = 27$, $y = 14$ and $x = -3$, $y = -1$
					Total 5 marks